The role of mathematical biology and Philip Maini’s podcast

Don’t let the image featured in this post fool you: this is about the role of mathematical biology. The observation comes from a podcast that we (at Pint of Science) released a few days ago featuring Prof. Philip Maini. Prof. Maini is the director of the Centre for Mathematical Biology at Oxford.

People have asked me (and my colleagues) about what the usefulness of theoretical/mathematical/computational biology. Here is a nice example:

Philip Maini and colleagues have worked on a mathematical model of neural crest formation. Around minute 3 of the podcast you can listen to Philip describe the biology of neural crest formation and the ‘verbal’ model that the experimentalist where working under. This model assumes that a certain factor (VEGF) is all it takes for the cells to move in the direction they do. Their mathematical model proved that, with the evidence at hand, the leading cells would consume all the available VEGF before the cells behind could make use of the gradient to go in the right direction. But not only did this mathematical model show what was wrong with the experimentalist’s assumptions, it also allowed them to explore what could be the guiding mechanism. Turns out that front cells and follower cells are different and that the following cells attach to the leading ones in order to find their way.

This shows 2 different ways that mathematical modelling proved to be useful: it allowed us to discard wrong assumptions and also to easily (and inexpensively) explore new hypotheses that can then, later, be confirmed experimentally.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s